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Modelling the impact testing of prescription lenses
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Lenses are tested in an impact test in which a steel ball is dropped from a height onto
the centre of the lens. This causes the lens to deform until the stress in the lens reaches
a point at which fracture occurs. A survey of the literature was carried out and analytical
models of the load/deflection and of the deflection/stress relationships were selected.

A mathematical model of the impact test on lenses was developed. This model consisted of
calculating the load-deflection relationship of alens loaded at a central point, combined with
calculating the deflection at which fracture occurred. From this model the impact energy
required to deform a lens to fracture was obtained. This was held to be equal to the
minimum kinetic energy of an impactor, less losses, that would be needed to cause lens
fracture. As the losses are small, the calculated energy was used as an estimate of the impact
strength of the lens. These values were then compared to those established by experiment.
The impact energies predicted by the model were a close approximation of the experimental

results for the lenses tested.

1. Introduction

This work is part of a project studying the fracture of
ophthalmic lenses. Lenses are made in the shape of
shallow, partial spherical shells, as shown in Fig. 1.
The current method of evaluating the impact resist-
ance of the lenses is to drop balls of varying weights
onto the lenses from a height of 50 inches (1270 mm).
By varying the weight of the ball, the impact energy
required to cause fracture can be determined. This
technique is based on the United States FDA Impact
Resistance Regulation [1]. This method is expensive
in time and materials, and the results are subject to
variation due to the natural distribution of flaws in the
lenses. These factors make this test unsuitable for use
in the development of new materials or lens types.

A major aim of this project was to be able to predict
the critical impact energy of a given lens without the
time and expense of constructing a die, casting a series
of lenses and then testing a sufficient number of lenses
to establish a statistically valid result. To this end
a model was created of the impact situation which was
used to predict the impact energy from easily mea-
sured properties such as fracture stress and Young’s
modulus.

The model was initially developed for plano lenses,
an industry term meaning that the lens thickness was
constant. This gives a lens that does not have any
refracting power, such as those used for sunglasses and
safety goggles. Constant lens thickness simplified cal-
culation but as the majority of production involves
prescription lenses which have varying wall thickness,
the model was also extended to prescription lenses.

0957-4530 © 1997 Chapman & Hall

2. Modelling
2.1. Failure criteria
The standard FDA impact test for ophthalmic lenses
consists of placing a lens on a circular support
25.4 mm in diameter with the convex side uppermost.
The steel ball is dropped from a height of 1270 mm,
giving an impact velocity of 5ms~!. The drop weight
impacts the lens in the centre of the convex side and
causes the lens to deform. This deformation causes
stress in the lens, and when the stress reaches the
failure stress of the lens material, the lens will break.
Because the lens materials are brittle, the failure
occurs by fast fracture. Fracture occurs when the
stress reaches a level where a flaw or crack that is
already present in the sample is able to grow so that
the sample breaks. This situation is represented by

ch = YG\/% (1)

where K, is the critical stress intensity factor at which
a crack will grow in the material, Y is a factor related
to the geometry of the crack, o is the stress and a is the
length of the crack.

The stress at which crack growth occurs is de-
termined by the K, of the material and the size and
distribution of flaws within the sample. The approach
adopted in this work was to measure the stress at
failure using a simple mechanical test and to use this
value to calculate the impact strength. The failure
stress was measured using a sample in bending. Since
the failure region of the lens in the impact test was also
in bending, the use of bending samples gave similar
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Figure 1 Pictorial view of an ophthalmic lens.

flaw geometry to the impact test. Hence the geometry
factor Y should be the same. Moreover, the fracture
stress samples were cut from lenses, which ensured
that the size and distribution of the flaws was identical
to those causing failure in the lenses under impact.

Therefore, the failure stress of the lens material
measured in the simple bend test should give a
reasonable estimate of the failure stress of the lens
during impact provided the test material does not
show a strong rate dependence in its mechanical prop-
erties. This point will be discussed later.

2.2. Modelling a plano lens
2.2.1. Energy transfer
If the failure stress of a lens is known, it is now possible
to calculate the deflection of a lens at the point of
fracture in the impact test. Initially a model was de-
veloped for a plano, uncoated lens that was impacted
in the centre of the convex side by a sphere with
a known kinetic energy. The inertial effects of the lens
were neglected, and the stress/strain relationships
were treated as quasistatic. Impact behaviour can be
treated as if the load was applied quasistatically if the
speed of an impact is low enough to avoid significant
energy loss through factors such as vibration, noise,
heat and the kinetic energy of fragments [2].
Assuming that the lens behaves elastically under
impact loading, the maximum deflection of the lens at
the point of load application (A) will be such that the
stored elastic energy in the lens is equal to the kinetic
energy (E,) of the drop weight. Hence:

0

Ek=rpd6 2

where P is the load on the lens and § is the deflection
caused by that load.

This stored energy is represented as the area under
the load/deflection curve for the lens as in Fig. 2.

2.2.2. Lens deflection

Observation of the compression of a lens shows that
the deflections reached were large when compared to
the thickness of the shell. Hence, the linear stress/
strain relationships, such as those listed by Roark [3],
were invalid. However, if the load/deflection curve and
the deflection at which failure occurs are known for
the lens, then it would be possible to integrate the
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Figure 2 A typical load versus deflection curve showing the stored
elastic energy.

Figure 3 The shape of a spherical shell buckling under a central
point load.

load/deflection curve up to that point to obtain the
kinetic energy required to fracture the lens.

The literature has very few references [4—8] that
discuss large deflections of a thin, shallow, spherical
shell under point loading. The deflection of the lens
can be summarized as follows. The shell undergoes
a limited amount of linear elastic deflection as de-
scribed by Roark [3] before the shell begins to buckle.
This buckling process consists of the top of the shell
turning inside out and producing a section of shell,
concentric with the indentor, that has its curvature
reserved [4, 6], as shown in Fig. 3. As the walls of the
shell are thin, the amount of strain in the reversed
section is very small, approaching zero as the wall
thickness approaches zero. The sources of strain in the
shell walls are the linear deflection as described by
Roark [3] and the sharp curvature at the boundary
between the reversed and unreversed sections of the
shell.

Buckling of this spherical shell has been studied
by Pogorelov [4], Chien and Hu [5], Ashwell [6],
Biezene and Grammel [ 7], and Leckie [8]. Analysis of
the buckled shell consists of calculating the strain
energy in the deformed shell and comparing this with
the amount of work done in deforming the shell.
The differences between the separate approaches
in the literature consist of the assumptions made
about the shape of the boundary between the inverted
inner region and the outer region, and the approxima-
tions used in finding the solutions to the strain
equations.



The final solutions to these approaches tend to be
similar in form [5-8] except for that derived by Po-
gorelov [4]. In his solution, the deflection of the point
of load application (J) is given by

R?P?
T 9P E% LS
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where R is the radius of curvature of the undeformed
shell, ¢ is a constant =~ 0.19, E is the modulus of the
material, and ¢ is the shell wall thickness. It can be seen
that this solution gives a value of force that is con-
stantly increasing with deflection. However, as will be
seen later, the experimental values of the load on the
lenses in this work increased up to a peak load and
then decreased. Pogorelov’s approach was clearly un-
able to model the experimentally determined lens be-
haviour.

The solutions given by Chien and Hu, Ashwell and
Biezene and Grammel all correctly model a peak in
load, but disagree as to the position of the actual peak
(see Fig.5). The solutions are given in the form of
curves which represent the equations expressed in the
form of dimensionless parameters. For Ashwell [6]
and Biezene and Grammel [7] these consisted of P’
plotted against &’ where
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Chien and Hu [5] used a different dimensionless
parameter for the load. Their parameter was Q where
2fbr?
= 6
0="1% ©)
where f is the height of the lens, b is the radius of the
circle on which the load is applied and r is the radius
of the lens. Chien and Hu [5] then developed a poly-

nomial that related Q to §/t.

t

+ 0.1734 <8 )3 (7)

t

& )2
Q = (0.6 + 0.08368K*)  — 0.255k< >

where k = 2P/t.

Unfortunately, their Equation 7 for the dimension-
less load parameter is not dimensionless and has no
relation to the load. This is most probably attributable
to misprints in the translation of their paper. If f is
assumed to be the load (P) instead of the lens height
then their equation matches their description and the
resulting curve approximates those of Ashwell [6] and
Biezene and Grammel [7].

2.2.3. Modelling the stress in the lenses

To allow for the large deflections encountered in the
lenses (see Fig. 3) the lens was modelled as a simply
supported, circular plate subject to a large deflection

because of a central point load. This approximation is
valid because the ratio of lens height to lens diameter
is less than 1/8 [9]. The stress in the centre of such
a plate is given by Blake [2] as

2

S=F(5,0)E % ®)

where F is a function of 6 and t.

2.3. Modelling prescription lenses

2.3.1. Initial assumptions

In the deformation of a partial spherical shell, the
deflection consists of two parts. The first part con-
sists of the linear deflection with no large change
in the overall shape of the lens as described by Roark

[3]:
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where v is the Poisson’s ratio and A is a variable
dependent upon the geometry of the shell. The second
part of the deflection consists of buckling. In this case
the deformation occurs in a circular hinge that forms
concentrically to the axially applied load. This form of
deflection is generally larger than the first sort.

From this behaviour, a hypothesis was proposed for
the deflection of a powered lens. This was that at a
given load P, the centre of a powered lens will have
a deflection due to buckling equal to that of a plano
lens of the same radius and of thickness t, where ¢t is
the thickness of the powered lens at the radius of the
buckling.

2.3.2. Allowing for linear deflection

The above hypothesis did not take into account the
linear deflection of the inner portion of the lens. The
inner portion was the region of the lens that was inside
the hinge line when buckling occurs. This linear deflec-
tion was larger for a concave lens as it becomes thin-
ner towards the centre, where most of the deflection
occurred. Likewise a convex lens had less linear deflec-
tion than a plano lens.

The linear deflection of a shallow spherical shell has
been described by Roark [3]. This equation is for
a shell of constant thickness. For a shell of variable
thickness, a different approach was required.

In this case, the central area of the shell was broken
up into a series of concentric rings. Each one of these
rings was given a constant thickness corresponding to
the thickness of the shell at that radius. The rings were
assumed to be constrained at the ends to approximate
the fact that they were joined onto the next ring
segment. For each ring the deflection was calculated
and these were summed to give the total deflection for
the inner portion of the lens.

The linear deflection calculated for the prescription
lens was then used to correct the deflection previously
calculated for the plano lens with the same amount of
buckling. This gave the total deflection for the pre-
scription lens.
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2.4. Calculating the impact energy

To calculate the deflection of a prescription lens, it was
easier to start with the deflection and calculate the
load. Therefore a row of deflection values were set up
in a spreadsheet. From these values the load could be
calculated as follows.

Given a deflection (), the radius of the hinge line (')
and hence the thickness at the hinge (1) were cal-
culated. With the values of 8 and ¢, the load P was
calculated using the same formula as for the buckling
of a plano lens. Using the load, the value of 6 was
corrected to allow for the elastic deflection of the inner
region, as described above, and from the new 9§, the
stress (o) was calculated. With the final values of & and
P, the incremental strain energy was obtained. The
incremental strain energies were then summed until
the stress was equal to the breaking stress of the
material. The sum of the strain energies should then
have been equal to the kinetic energy required to
break the sample.

3. Experimental procedure

3.1. Materials

The materials used in this study were propri-
etary thermosetting resins supplied by SOLA Inter-
national Holdings Ltd., and designated R1, R2, R3
and R4:

R1 was a poly-diallyl diethylene glycol carbonate.
R2, R3 and R4 are proprietary thermoset materials
supplied by SOLA.

3.2. Modulus of rupture tests

3.2.1. Modulus of rupture principles

To provide a measure of the fracture stress of the
material, a modulus of rupture (MOR) test was used.
This consisted of a test whereby a strip of the material
to be tested was placed in three-point bending as
shown in Fig. 4. The load on the sample was increased
until failure occurred in the tensile (for brittle mater-
ials) face of the specimen. The stress (o) at failure can
then be calculated by

c="" (10)

where M is the applied bending moment at failure, y is
the distance from the neutral axis to the tensile face
and I is the moment of area of the sample cross-
section.

For a flat strip the modulus of rupture is equal to

o 3PWa
T bt?

(11)

where P is the load at failure, W, is the length of the
moment arm, b is the width of the strip and ¢ is the
strip thickness.

For brittle materials, the failure was in the form of
catastrophic crack growth from some flaw that was on
or near the tensile face in the region of maximum
stress, i.e. beneath the central loading line.
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Figure 4 A modulus of rupture sample showing the applied loads.

3.2.2. Sample preparation

30 mm wide strips were cut from the centre of each
lens with a hacksaw. The strips were then cut into
halves, giving specimens 30 mm wide by 35 mm long.
This gave a sample of the required size but with very
rough edges. As the sample was required to fail from
a flaw that was present in the as-received material, the
potential failure sites in the edges had to be removed
before testing. This was done by using a series of
successively finer grades of abrasive paper on a polish-
ing wheel, finishing with diamond paste of 1 p grade to
give a fine polish. This ensured that the flaws causing
the failure were the original flaws in the surface of the
lens.

3.2.3. Testing procedure
The strips were placed, convex side up, on two sup-
porting edges 25 mm apart. The load was then applied
via a central line. This rig was then loaded in an
Instron model 1026 testing machine until the sample
failed. The test was performed at a crosshead speed of
10 mm/minute at a temperature of 25°C. A complete
plot of load versus extension enabled the bending
moments to be calculated. From these, the modulus of
rupture could be evaluated.

Similar tests were then performed at strain rates
between 1 mm/minute and 500 mm/minute to deter-
mine the effect of changes in strain rate.

3.3. Single-point compression of lenses
To test the lenses quasistatically, the lenses were com-
pressed at a crosshead speed of 10 mm/minute under
a 16 mm (5/8 inch) spherical indentor applied to the
centre of the convex side. The lenses were supported
on a Teflon® coated annular ring of 25.4mm (1 inch)
diameter. The size of the indentor and the support ring
was the same as those specified for the FDA impact
test.

The load deflection curves from these tests were
compared to those predicted by the models from the
literature to find the best match.

3.4. Drop weight tests
The initial drop weight tests were carried out in ac-
cordance with the FDA procedure [1]. Lenses



which passed this test were subjected to further im-
pacts of increasing energy (increasing ball weight and
height) until failure occurred. The average energy re-
quired to cause failure was then calculated. This test
was carried out on a variety of plano and prescription
lenses.

4. Results

4.1 Load deflection curves

The load deflection curves for the lenses were meas-
ured experimentally using the single-point compres-
sion test. These curves start with an almost linear rise
in load, which gradually plateaus out before decreas-
ing again as the lenses buckled. These curves were
then compared to those from the literature. The
method from the literature that was found to give the
closest approximation to the experimental results was
that of Ashwell [6]. An example of this comparison is
shown in Fig. 5 for a 3 mm thick plano lens.

4.2 Bend tests
The modulus of rupture and the elastic modulus ob-
tained from the bend tests are given in Table L.

The bend tests carried out at different strain rates
showed that there was some dependence of mechan-
ical properties on strain rate but that this relationship
is not a strong one. These results correlate with the
findings of Frounchi et al. [10].

This data was combined with the stress/deflection
Equation 8 of Blake [2] into a spreadsheet. From this
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Figure 5 Theoretical load deflection curves (x [6]; O[7]; (I [5])
compared with the measured values (——).

spreadsheet the theoretical load/deflection curves
were calculated from the dimensions of a lens and the
elastic modulus. Then, given the rupture stress, the
deflection at which fracture would occur was cal-
culated, and hence the impact energy at fracture was
obtained.

4.3. Comparison of calculated and
experimental results

The impact results for plano lenses from the computer
calculations and the experimental results are presented
for a variety of different lens types in Table II.

The impact results calculated from the model for
powered lenses are shown in Table III compared to
experimental results.

5. Discussion

The impact results calculated from the MOR and
modulus data were in close agreement with the experi-
mental data, especially those for energies less than one
joule. The degree of precision obtained from the com-
puter model was also very good, at least as precise as
the multiple drop-weight tests.

There were, however, some deviations from the cal-
culated results, particularly in the lenses with the high-
est impact resistance. This is because this model did
not take into account three important factors.

First, in the single-point compression tests, the
lenses did not always deform in the manner predicted
by the equations. For those lens shapes that had high

TABLE II Experimental and predicted impact results for plano
lenses made from the different resins

Resin Thickness  Diameter Calculated  Impact

type (mm) (mm) energy energy
(0 )}

R1 1.8 70 0.65-0.7 0.7

R1 2.0 70 0.8-0.86 1.1

R1 3.0 65 1.38-1.5 1.5-2.8

R2 1.75 70 0.38-0.39 0.4

R2 1.8 70 0.82-0.93 0.7

R2 2.0 70 1.01-1.14 12

R2 3.0 65 1.83-2.1 1.7-2.8

R3 1.8 70 0.48 0.26-0.5

R4 2.19 70 0.7 0.6

TABLE III Experimental and predicted impact results for pow-
ered lenses

Resin type  Centre Front curve/ Impact Calculated
TABLE I Experimental values of modulus of rupture, or fracture thickness back curve energy  energy
stress (mm) (dioptres) J) J)
Resin type Elastic modulus Modulus of rupture R1 1.8 6.00/6.00 0.7 0.675
(GPa) (MPa) R1 1.8 2.50/7.50 1.3 12
R2 1.8 6.00/6.00 0.7 0.85
R1 1.3 5343 R2 1.75 4.75/4.75 0.4 0.39
R2 1.34 70 + 4 R2 1.5 2.00/7.00 L5 0.9
R3 0.97 3446 R2 1.5 4.75/6.00 0.7 0.6
R4 1.1 75+6 R4 1.25 4.01/6.00 0.29 0.27
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impact energies, particularly for those significantly
above one joule, the shape of the load/deflection curve
deviated substantially from the predicted curve. Both
of the original analytical studies were intended to be
accurate only within deflection-to-thickness ratios
smaller than three [2, 6]. Although most of the lenses
tested had maximum deflections below this limit, the
1.5 mm R2 lenses were beyond the capabilities of this
model.

Secondly, assumptions were made about the posi-
tion of the crack initiation point. The model assumed
that the critical flaw was located at the surface of the
centre of the concave side of the lens, opposite to the
impact point. This area of the lens was put into biaxial
tension by the deformation of the lens. The flaw itself
was very small compared to the size of the wall thick-
ness or the radius of curvature so it was modelled as
a surface crack subject to a tensile load due to a
bending moment. This is the same situation as the
modulus of rupture test. Thus the same fracture stress
should apply to both cases. Scanning electron micro-
scopy of the fracture surfaces revealed that fracture
did, in fact, originate from surface flaws. However, for
samples that failed with a high impact energy, such as
the second and fifth entries in Table III, the fracture
did not arise from the stress under the impact point.
Instead the initial fracture occurred in the hinge line
that separated the inverted from the non-inverted re-
gions of the buckled lens. This resulted in the forma-
tion of a circumferential crack concentric to the im-
pact site. At this position, the stress in the material was
determined by the radius of curvature of the hinge line,
and the shear stresses across it. The addition of sub-
stantial amounts of shear stress would also have affec-
ted the applicable shape factor at the crack tip.

Finally there were the assumptions made about the
strain rate dependence of the lens materials. Like all
polymers these resins exhibit viscoelasticity [10], but
because of their high crosslink density and high glass
transition temperature, the effects of strain rate were
small over the changes in velocity encountered in this
work.

In the development of new resin materials, espe-
cially those with higher fracture toughness, it is likely
that some resins will be much more sensitive to strain
rate effects. In these cases, the values of fracture stress
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and elastic modulus must be determined at the impact
velocities, not at the normal testing rates available in
standard laboratory test equipment.

6. Conclusions

The model developed in this work was able to predict
the impact energies of ophthalmic lenses in the FDA
impact test. From a simple measure of the failure
stress and the modulus in bending, the impact energy
of any prescription lens could be estimated. The accu-
racy of the method was limited in those lenses where
the impact energy was high as the failure mode
changed from failure under the point of impact to
failure at the line of buckling. The model also assumed
that the strain rate dependence of the mechanical
properties was low, which may limit the model for
some materials.
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